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Reverse osmosis desalination is one of the most important and increasingly
popular technologies to augment available water resources. Central to the
technology is a thin-film-composite polyamide membrane capable of
separating pure water from seawater or brine. Since its conception and
initiation, the membrane industry has followed a linear life-cycle scheme.
However, increasing production costs of fossil-based materials and more
stringent environmental regulations drive the initiatives to adapt to a circular
economy of membrane materials. In this perspective, we briefly summarize the
pressing issues in the state-of-the-art membrane industry, then discuss the
opportunities in future technology innovations with a focus on sustainable
membrane manufacturing and recycling, and lastly provided an outlook for
future membrane design and fabrication towards a circular economy.
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1 Introduction

Circularity is at the core of a sustainable future. A “circular economy” transforms goods
at the end of their use lives into reusable resources, “closing loops” in industrial ecosystems
by eliminating waste, circulating products, and preserving the environment (Kümmerer,
Clark and Zuin, 2020). Desalination membranes are a critical component to a circular,
sustainable future as membrane processes represent so far, the most energy-efficient
approach for water purification and resource recovery from many non-traditional water
resources (Hube et al., 2020).

As a vital contribution to the nutrients, energy, and water (“NEW”) initiatives (Ren and
Umble, 2016), today’s linear economy of desalination membrane materials must be adapted
to a circular economy. The current membrane industry suffers from several shortcomings,
e.g., usage of fossil-based membrane materials, dependence on organic solvents, and lack of
End-of-Life (EoL) management of membrane wastes. The transition towards a circular
membrane industry involves system-wide changes and the integration of sustainable
manufacturing processes and a membrane-to-membrane circular economy loop based
on innovative recycling techniques.

Achieving a circular economy system for desalination membrane materials is hampered
by the current “take-make-waste”model of membrane elements (Senán-Salinas et al., 2021).
Reverse osmosis (RO), which is the most widely used and energy-efficient desalination
technology accounting for ~80% of the world desalination capacity, follows a linear life-cycle
scheme (Ahmed, Hashaikeh and Hilal, 2020; Liang, Dudchenko and Mauter, 2022). This
linear scheme includes the extraction of fossil-based materials, manufacturing and packaging
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of membrane modules in centralized facilities, distribution to
desalination plants, use and maintenance, and then disposal to
landfills after 5–10 years of service lives (Senán-Salinas et al., 2021).

State-of-the-art membrane manufacturing is energy intensive and
consumes fossil fuel-based resources. Today’s commercial thin-film-
composite (TFC) ROmembranes are fabricated using fossil-based plastic
materials, e.g., polyamide (PA), polysulfone (PSF), polyethersulfone
(PES) and polyethylene terephthalate (PET). Meanwhile, the
industrial fabrication processes of RO membranes [i.e., interfacial
polymerization (IP)] have been used and optimized for 4 decades,
leaving little room for innovation and the introduction of new,
“greener” materials (Nunes et al., 2020). In addition, these processes
face substantial challenges due to the increasingly stringent
environmental regulations on organic solvent utilization. Commercial
membrane production utilizes organic solvents to dissolve polymers
during membrane casting and spinning [e.g., dimethylformamide
(DMF), n-methylpyrrolidone (NMP), dimethylacetamide (DMAc),
tetrahydrofuran (THF), acetone, methanol, and ethanol] or the
monomers for IP (e.g., hexane, toluene, chloroform) (Dong et al.,
2021). Novel membrane manufacturing includes the use of renewable
materials, minimization or replacement of organic solvents, process
scalability, and energy input reduction (Nunes et al., 2020).

Lack of effective downstream recycling technologies complicates
the end-of-life management of membrane elements. Currently, RO
membrane elements constitute the main solid waste in many
desalination plants (Senán-Salinas et al., 2021). They are directly
disposed in landfills after reaching the end of their use-life. Presently,
nearly 840,000 RO modules (>14,000 tonnes/year waste of
membrane materials) are discarded every year worldwide and by
2025, this number is projected to rise to two million (Lawler et al.,
2015; Senán-Salinas et al., 2021). According to the material intensity
studies based on German energy mix (Wuppertal Institute, 2014;

Pontié, 2015), disposal of a waste RO membrane element (13.5 kg)
in landfills can produce 78 kg of abiotic materials, 2500 kg of water
contamination, and 40 kg of air contamination to the environment
(Coutinho de Paula and Santos Amaral, 2018). Increasing cost of
virgin materials and awareness of the environmental impact of
membrane waste are inspiring membrane manufacturers and
users to adapt to a circular economy of membrane materials.

Some recycling technologies exist for RO membranes. Direct
reuse of RO membranes or recycling into nanofiltration (NF) and
ultrafiltration (UF) membranes are the most studied recycling
technologies (Lawler et al., 2012; García-Pacheco et al., 2019).
Indirect recycling of discarded RO modules as support materials
for biofilm reactors or anion exchange membranes is also
proposed as waste valorization alternatives (Morón-López
et al., 2019; Lejarazu-Larrañaga et al., 2020). Despite the
technical efficiency, two challenges remain: 1) direct/indirect
recycling will shorten the lifespan of recycled membranes to
~2 years (Coutinho de Paula and Santos Amaral, 2018), which
then become waste materials; and 2) little is known about the
environmental and economic potentials of various recycling
techniques at full scale (Lawler et al., 2015).

Efforts to rigorously quantify the environmental impact of these
manufacturing and recycling alternatives are incomplete. Life cycle
assessment (LCA) is a systematic tool for evaluating potential
environmental outcomes. While several LCA studies have been
carried out on membrane manufacturing and seawater
desalination industries, most of them are focused on the process
operation, i.e., materials and energy consumption, which were found
to be the most impactful factors on the environment (Lawler et al.,
2015; Senán-Salinas et al., 2019). However, few studies have
explored the environmental effect of membrane manufacturing
and end-of life waste.

This perspective will provide a high-level overview of innovations in
membrane technology with a focus on sustainable membrane
manufacturing and recycling. We begin with a summary of recent
developments in sustainable membrane manufacturing and recycling
technologies, including both technological discoveries and LCA results.
Then we attempt to critically discuss the key opportunities in
technology innovations for making membrane and desalination
industries more sustainable. Thereafter, we outline a perspective for
future membrane design and fabrication towards a circular economy.

2 Sustainable membrane
manufacturing

The membrane industry uses a well-established portfolio of
materials and manufacturing processes to produce membranes.
The gold standard TFC RO membranes are industrially
fabricated via interfacial polymerization (IP) of diamines and
trimethyl chlorides on supporting ultrafiltration (UF)
membranes (Liang et al., 2020). A typical IP process involves
a large amount of water and organic solvent to dissolve the
monomers. Commercial UF membranes are manufactured
through phase separation of PSF or PES homopolymers on
PET non-woven fabrics. Non-solvent phase separation (NIPS)
and temperature-induced phase separation (TIPS) are the two
most common methods in the industry for the large-scale
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production of UF membranes (Dong et al., 2021). Similarly,
fabrication of UF membranes utilizes a large amount of water
and organic solvents, e.g., DMF and NMP (Nunes et al., 2020).
Lastly, porous PET non-woven fabrics are primarily
manufactured through melt-blown extrusion (Saleem et al.,
2020).

Development of future sustainable membrane manufacturing
processes needs to address several challenges. One significant
challenge facing existing industrial fabrication processes is the
critical need to adopt bio-based materials and solvent-free
systems (Nunes et al., 2020). Improving process compatibility
and scalability opens new avenues to using renewable materials
and minimizing hazardous chemicals and solvents. Another
challenge lies in extending the lifespan of membrane material
by improving the chlorine resistance, fouling resistance, and
chemical and thermal stability (Petersen, 1993). Lastly,
sustainable membrane manufacturing should consider the
end-of-life recycling of the material and attempt to implement
a recyclable-by-design approach to membrane fabrication.

2.1 Using renewable materials

Renewable and biodegradable polymers are promising
sustainable alternatives of desalination membrane materials.
Polymers derived from renewable, biobased sources can
significantly decrease the carbon footprint of the membrane
manufacturing processes (Shehata et al., 2023). For example,
cellulose, poly (lactic acid) (PLA), and poly (hydroxybutyrate)s are
some of the most studied biobased polymers to replace conventional
petroleum-based polymers for membranes (Table 1), such as PES,
PSU, and PVDF (Dong et al., 2021). Furthermore, these renewable
polymers can break down in industrial composting conditions which
can reduce the environmental impact of end-of-life disposals of used
membrane elements.

Implementing renewable materials in the present membrane
manufacturing processes is limited by the inferior performance
of these alternatives compared to conventional materials. In
order to achieve target performance required for rigorous
membrane applications, biobased polymers are often blended
with non-biodegradable polymers in manufacturing (Shehata
et al., 2023). However, the mix of multiple polymers can easily
cause a breakdown of the polymer structure and release non-
biodegradable materials into the environment (Shehata et al.,
2023). Meanwhile, the impact of biodegradation on the long-
term membrane performance is still unknown. Due to
uncertainty in the biodegradation rate, the disposed polymers
can leak into the ocean, impacting marine animals and the
environment (Shehata et al., 2023).

2.2 Using alternative solvents

The membrane industry is heavily dependent on traditional
toxic organic solvents. Conventional membrane manufacturing
processes consume a large number of hazardous solvents, such as
DMF, NMP, THF, DMAc, and dimethyl sulfoxide (DMSO) (Dong
et al., 2021). These petroleum-derived solvents are non-renewable,
highly hazardous, and are known endocrine disruptors. In addition,
removal or recycling of these solvents is energy-intensive and
dangerous due to their flammability and high boiling point
(Dong et al., 2021).

With growing regulations around solvent use in
manufacturing processes, substitution of conventional toxic
solvents with greener, non-toxic solvents is critical in the
realization of future sustainable membrane manufacturing.
Non-toxic and eco-friendly solvents can greatly decrease the
carbon footprint and environmental impact on membrane
manufacturing and recycling. Recently, several sustainable
solvent alternatives have been investigated for membrane

TABLE 1 Alternative routes towards sustainable membrane manufacturing and recycling.

Approach References

Sustainable membrane manufacturing

Using renewable
materials

Cellulose, lignin, bamboo fiber, chitosan, polylactide (PLA), poly
(hydroxybutyrate)s (PHB)

Clasen,Wilhelms and Kulicke (2006), Ray et al. (2010), Thakur and Voicu
(2016), Galiano et al. (2018), Colburn et al. (2019), Le Phuong et al.

(2019), Esfahani et al. (2020)

Using alternative
solvents

Methyl lactate (ML), supercritical CO2, ionic liquids (ILs),
triethylphosphate (TEP), organic carbonates, rhodiasolv® polarclean,

gamma-valerolactone (GVL)

(Huang, Seibig and Paul, 1999; Liu et al., 2011; Medina-Gonzalez et al.,
2011; Alonso, Wettstein and Dumesic, 2013; Hassankiadeh et al., 2015;

Jung et al., 2016; Alqaheem et al., 2018; Kim et al., 2019; Rasool,
Pescarmona and Vankelecom, 2019)

Improving membrane
stability

Fouling resistance, chemical resistance, thermal stability, mechanical
stability

(Jiang, Li and Ladewig, 2017; Davenport et al., 2018; Jarma et al., 2021)

Sustainable membrane recycling

Direct recycling Reused as RO, FO, NF, UF, or MF membrane modules (Rodríguez et al., 2002; Veza and Rodriguez-Gonzalez, 2003; Lawler et al.,
2011; Da Silva et al., 2012; Lawler et al., 2012; Ambrosi and Tessaro, 2013;
Lawler et al., 2013; García-Pacheco et al., 2015; Lawler et al., 2015;

García-Pacheco et al., 2019; Senán-Salinas et al., 2021)

Indirect recycling Recycled as the basis of novel membrane technologies (Morón-López et al., 2019; Lejarazu-Larrañaga et al., 2020)

Deconstruction and
upcycling

Mechanical recycling, solvolysis, pyrolysis, oxidation (Lawler et al., 2012; Jha and Kannan, 2021; Li et al., 2022; Sullivan et al.,
2022)
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fabrication. For example, methyl lactate (ML) is a biodegradable
solvent that can be used to fabricate cellulose acetate (CA)
membranes and polyetherimide (PEI) membranes via phase
inversion (Alqaheem et al., 2018). Supercritical carbon dioxide
(ssCO2) can be used to produce porous polycarbonate (PC)
hollow fiber membranes by melt extrusion (Rasool,
Pescarmona and Vankelecom, 2019). Ionic liquids consisting
of a polyatomic inorganic anion and an organic cation are
promising alternative solvents to prepare cellulose and PSF
membranes via phase inversion, and TFC PA membranes
through IP (Mariën et al., 2016). Other green solvents, e.g.,
triethyl phosphate (TEP), organic carbonates, Rhodiasolv®

PolarClean, Gamma-valerolactone (GVL), and PolarClean as
co-solvents (Table 1), exist to support the versatility of
membrane fabrication with improved performance and
morphology (Dong et al., 2021; Stone et al., 2022). On the
other hand, the prospect of replacing traditional solvents with
green solvents faces several challenges: 1) the costs of these safer
and greener solvents are typically higher than those of
conventional membrane fabrication solvents; 2) biodegradable
solvents may cause eutrophication in the water system; and 3) the
environmental and economical impact of green solvent recovery
remains unknown (Dong et al., 2021).

2.3 Improving membrane stability

In addition to switching to renewable chemicals, improving
membrane fouling resistance can critically contribute to the
future sustainability of membrane materials. Membrane fouling is
an inevitable and persistent issue in today’s membrane applications
due to the buildup of foulants on membrane surface (Petersen, 1993).
Fouling reduces the water treatment efficiency, increases energy
consumption of the filtration process, and most importantly,
reduces the lifespan of membrane elements because of the frequent
chemical cleaning required. The problem of membrane fouling
originates from the morphological nature of TFC RO membranes.
Thus, solutions to improve the anti-fouling properties of membranes
comprise three avenues (Nunes et al., 2020). First, creating a smooth
support layer with undulated surface topography for TFC PA
membrane fabrication can significantly reduce surface roughness.
Second, surface modification with strong electrolytes, surfactants,
and hydrophilic polymers enhances the anti-fouling resistance.
Last, designing membranes with chlorine-resistant materials can
prolong the lifespan of membranes, and reduce waste disposal by
extension.

Membranes with improved mechanical, chemical, and thermal
stability will further extend the applicability and lifetime of
membrane separations (Table 1). Despite the great success of
membrane technology in the water sector, tremendous
opportunities remain in the chemical, petrochemical, and energy
sectors. Highly stable membranes, e.g., crosslinked polyimide, poly
(ether ether ketone) (PEEK), polyacrylonitrile, and
polydimethylsiloxane are promising materials for chemical and
geothermal applications (Dong et al., 2021). Simultaneous
improvements in the stability of the support layer and membrane
housing also need to be considered to successfully apply these
membranes.

3 Sustainable membrane recycling

Today’s membrane industry follows a linear model of raw
materials extraction, centralized manufacturing and distribution,
service and maintenance, and disposal to landfills. Lack of
considerations in module recycling and reuse in the design phase
results in a growing number of discharged RO membrane elements
worldwide. It is estimated that the desalination sector will generate
14,000 tons of EoL RO membrane elements annually (Senán-Salinas
et al., 2019). The increasing flow of plastic waste into the environment
not only leads to significant loss of useful resources but has a profound
negative impact on environmental and human health.

Reusing and recycling EoL membrane elements have great
potential to reduce the environmental impact and close the loop
in the circular economy of desalination membrane materials. In
addition to the proper design of membrane elements with renewable
and biodegradable materials, innovations in membrane recycling
technology are needed. At the same time, LCA represents an
important tool that can provide valuable information on the
potential environmental outcomes of various recycling techniques.

3.1 Direct recycling of membrane elements

EoL ROmembrane elements can be recycled and reused directly
as other types of membrane elements. In addition to the direct RO
reuse (Table 1), EoL RO membrane elements can be transformed
into forward osmosis (FO), NF, UF, or MF membranes after being
cleaned and chemically treated with a NaOCl solution (Lawler et al.,
2012; García-Pacheco et al., 2019). A few LCA studies concluded
that direct brackish water (BW) RO membrane recycling into UF
and seawater (SW) membrane recycling into NF was the second
preferable option behind direct RO reuse (Senán-Salinas et al.,
2021).

In addition to the materials factor, process parameters also play a
vital role in the pilot scale of direct recycling processes. Recent LCA
studies compared two pilot-scale direct recycling systems, i.e., an active
system (AS) and a passive system (PS) (Senán-Salinas et al., 2019). AS
has an internal recirculation of hypochlorite solution inside two
pressure tubes, whereas PS has six modules without internal
recirculation. Meanwhile, AS and PS systems also have major
differences in exposure doses. LCA results revealed that PS lowered
the environmental impact of the AS up to 66%–70%. A cost-effective
analysis reported the cost of AS was €54.5–73.75/module, and the cost
of PS was €25.9–41.5/module. Another LCA study identified that the
transportation of waste ROmembranes to the recycling location and the
distribution of secondary products to end-users play a crucial role in the
overall environmental impact (Lawler et al., 2015).

3.2 Indirect recycling of membrane
elements

Alternative waste valorization techniques turn recycled RO
membranes into the basis of novel membrane technologies
(Table 1). A recent study reported the usage of discarded RO
membranes as support for a biofilm reactor to remove microcystins
(MC) (Morón-López et al., 2019). Unlike direct recycling, used SWRO
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and BWRO membrane elements did not need cleaning because the
fouling membrane surface was advantageous for biofilm attachments.
The Recycled-Membrane Biofilm Reactor (R-MBfR) was capable of
degrading 2 mg.L−1 of MC in 24 h. Furthermore, a cost assessment
analysis reported a 0.140 €m−3 of unitary cost estimation for
removing >95% of extracellular MC.

Indirect recycling alternatives represent a versatile and highly
tolerant approach to recycling imperfect EoL RO modules. In the
case where discarded RO modules are excessively damaged and
unable to be directly recycled into UF and NF membranes,
indirect recycling can be a more reasonable option. For
example, EoL RO elements can be reused as the support for
preparing ion exchange membranes (IEM) for electrodialysis
(ED) (Lejarazu-Larrañaga et al., 2020). Meanwhile, the
polypropylene (PP) feed spacers from the RO modules are
reused as turbulence promoters, end plates, and compartments
in the ED stack. In this process, 51% of the EoL RO module is
successfully recycled into an ED system.

3.3 Deconstruction and upcycling

After reuse and direct/indirect recycling, deconstruction of
RO membrane materials and upcycling of the deconstructed
intermediates to produce new materials may provide a
promising solution to end plastic waste in landfills.
Commercial RO membrane modules are complex formulations
of several types of materials. The spiral-wound element consists
of TFC PA membranes, feed spacers, permeate spacers, a
permeate tube, and plastic housing. Because of the ultra-thin
PA layer and PES support of TFC PA membranes, only the PET
non-woven fabrics are economically and technically worth
recycling (Nunes et al., 2020). In addition, both permeate and
feed spacers are made of polyolefins such as PP and polyethylene
(PE) that can be recycled. As a result of this heterogeneity,
advanced chemical and/or biological processes are required to
break down these complex formulations to upcyclable
intermediates.

Mechanical recycling of plastic wastes involves collecting and
sorting, then shredding and extruding into pellets or other forms,
and reforming into new products. Conventional mechanical
recycling can be applied to single streams of materials such as
sorted/separated PET, PP, or PE steams, but cannot be applied to
mixed materials (Table 1). Furthermore, mechanical recycling
usually results in quality loss of the material due to thermal-
mechanical degradation that occurs during the recycling process
(Li et al., 2022). On the contrary, chemical recycling techniques
that break down the material into parent monomers or other
chemical building blocks overcome limitations in heterogeneous
waste and offer more advantages such as high conversion,
contamination resistance, energy saving, and low carbon
footprint (Li et al., 2022). For example, various solvolysis
methods have successfully been used for PET
depolymerization, e.g., glycolysis, methanolysis, and hydrolysis
(Li et al., 2022). Pyrolysis is a typical chemical recycling method
for polyolefins such as PE and PP, which can break down PE
plastics into pyrolysis oil which can be upgraded into fuels or
further refined into hydrocarbons for plastic production. Types

of pyrolysis include catalytic pyrolysis, hydrogen-assisted
pyrolysis, and microwave-assisted pyrolysis (Jha and Kannan,
2021). Last but not the least, combining chemical and biological
processes shows great potential for funneling mixed plastics
including PET, HDPE, and PS into useful chemical products
(Sullivan et al., 2022). Chemical and biological recycling
processes are still in development, with few operating at the
pilot scale. Regardless, these technologies show promise as
effective means of mitigating material waste and keeping
carbon building blocks circular.

4 Discussion

Despite the great success of RO-based desalination technology in
the water sector, today’s linear membrane economy must adapt to a
circular economy. Future efforts are needed in technology
innovations in scalable, sustainable membrane manufacturing
and membrane recycling.

Sustainable membrane manufacturing needs to seek
renewable material alternatives, minimize or replace toxic
organic solvents, and expand the compatibility of the
existing industrial membrane manufacturing process. While
it remains challenging to replace the polyamide active layer
of the gold-standard TFC-PA RO membrane due to its
satisfactory perm-selectivity, innovation concerning the use
of renewable or biodegradable materials to replace other
elements of RO membrane modules can potentially reduce
the environmental impact of waste membranes. More
importantly, searching for alternative, green solvents to
replace traditional hazardous solvents in the manufacturing
process is an urgent need to reduce the solvent emission and
meet more stringent regulations.

Extending the lifespan of membrane elements is also of great
importance for advancing the sustainability of membrane materials.
Membrane fouling remains one of the major concerns in the
membrane technology, limiting the membrane lifespan and
increasing the operation cost. Therefore, the main improvement
area for future RO membranes is fouling resistance and chemical
resistance to cleaning agents.

Last but not the least, substantial efforts are needed to
address the knowledge gap in the environmental and
economic aspects of various recycling technologies for EoL
membrane elements. Direct/indirect recycling can extend the
lifespan of membrane modules and bring environmental
benefits and monetary gains but is not a circular solution for
membrane waste. While advanced chemical and/or biological
recycling has the potential to break down mixed plastic, the
technical efficiency and the associated environmental impacts,
especially when applied to membrane recycling, remain
understudied.
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