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A B S T R A C T   

We present a simple and robust method to simultaneously characterize the water and salt permeability (A, B) of 
reverse osmosis (RO) membranes and mass transfer coefficient (k) in membrane modules. The proposed meth
odology comprises a set of RO experiments performed at different operating pressures or stages. The measured 
water and salt fluxes in each stage are simultaneously fitted to the RO transport equations by performing a non- 
linear regression, using A, B, and k as regression parameters. We first perform a systematic accuracy analysis of 
the proposed method across the full operational range of RO. The assessment shows that the method accuracy is 
substantially higher than current methods and increases with number of experimental stages and driving forces. 
This assessment is used to inform the design of an experimental protocol that minimizes errors in estimated A, B, 
and k. We then evaluate two commercial RO membranes following the new protocol. For both membranes, A and 
B parameters decrease by 17% and 15% from the dilute solution to seawater concentrations, whereas the k 
parameter remains constant. Our study demonstrates that the proposed method, informed by data-driven 
experimental designs, provides a new approach for accurately characterizing transport phenomenon in mem
brane processes with feeds of less than 100 g/L total dissolved solids.   

1. Introduction 

Membrane-based desalination processes represent an efficient and 
sustainable separation technology platform for water purification [1–7]. 
Seawater reverse osmosis (SWRO) desalination (feed ~35 g L–1; π ~ 28 
bar) remains the most energy-efficient and cost-effective separation 
process for freshwater production from seawater [8,9]. Extensions of the 
RO process to hypersaline brines (feed up to 250 g L–1; π up to 300 bar) 
may also enable zero liquid discharge (ZLD) [10–12]. 

Central to these technologies is a semipermeable membrane capable 
of separating pure water from seawater or brine [3,13–15]. The per
formance of the RO membrane is generally described using the water 
permeability coefficient (A) and salt permeability coefficient (B) [16]. 
However, the measurement of A and B values in RO has always been 
complicated by the formation of a concentration polarization (CP) layer, 
which leads to a higher osmotic pressure at membrane-water interfaces 
[17–19]. This osmotic pressure must be accurately established in order 
to determine the net driving force and calculate A, and B [20]. 

Standard methods for measuring RO membrane parameters are 
designed for measurements at low salt concentrations that minimize the 

formation of CP or attempt to approximate it empirically [21]. The most 
common method involves two separate experiments [22]. In the first 
experiment, the water permeability is measured using deionized water 
as feed, where no CP forms and driving force is proportional to applied 
hydraulic pressure. This allows for direct calculation of the A parameter. 
Under the assumption that A does not change in the presence of salt, a 
second experiment is performed using the same membrane and a feed 
concentration of 100–1000 ppm (seawater TDS is ~35,000 ppm) [22]. 
Assuming that the CP is negligible under these low bulk TDS conditions, 
the B parameter can be estimated by comparing the bulk salt concen
trations in the feed and permeate streams. Although this method is valid 
for measuring A and B in low salinity conditions, it does not allow direct 
measurement of A and B in high salinity conditions, where the poly
amide layer is expected to dehydrate and its transport properties to 
change. 

The other most commonly used method overcomes this problem by 
characterizing A and B parameters simultaneously from the estimates of 
the driving force [23,24]. Specifically, surface concentration in the 
boundary layer is first calculated based on film theory to account for the 
CP [17]. Next, A is determined by dividing the water flux by the osmotic 
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pressure difference across the membrane and B is determined by 
dividing the salt flux by the concentration gradient across the active 
layer. Both calculations rely on accurate estimation of the mass transfer 
coefficient in the boundary layer, the accuracy of which varies signifi
cantly depending on the validity of empirical correlations over the cell 
dimensions and flow regimes used in the experimental setup [25]. 

Accurately estimating mass transfer rates is also critical for vali
dating CP layer theories. Standard CP theory assumes a stagnant thin 
film model with one-dimensional flow and a fully developed boundary 
layer in which mass transfer occurs across a stagnant film of thickness δ 
(function of module length) [26]. This model ignores the impact of 
permeate convection on the film layer thickness, and its validity for 
multi-component salts is not known. Recently, more complex empirical 
models have been developed, e.g., retained solute (RS) model [27,28] 
and numerical convection–diffusion (CD) model [17], to include the 
impact of locally varying permeate flux on the development of boundary 
layer. Both the standard and modified CP models rely on empirical 
Sherwood correlations to estimate mass transport rates that, as 
described above, are prone to misapplication [22]. 

Directly quantifying the mass transfer coefficient is challenging due 
to the uncertainty of empirical methods and the lack of clear guidance 
on the respective accuracy of each approach. The standard method of 
calculating the k parameter involves first estimating the Sherwood 
number (Sh) using either the laminar or turbulent flow correlation for a 
rectangular channel and then calculating k using the film model [29]. 
Similar empirical methods were developed for measuring k and level of 
CP based on film theory. For example, Sutzkover et al. proposed a 
technique to determine k by measuring the flux decline induced by the 
addition of a salt solution to an initially salt-free water feed [30]. 
Alternatively, Mahmood et al. reported an indirect method to estimate 
the mass transfer coefficient based on the measurement of dissolution of 
a plate of benzoic acid in water [23]. The benzoic acid concentration in 
the water was measured by UV–vis as a function of time, allowing the 
calculation of the mass transfer coefficient [23]. However, the accuracy 
of these methods has never been fully quantified. 

As alluded to below, uncertainty in the accuracy of the methods or 
imprecision in experimental measurements can lead to large errors in 
the estimated parameters. Our recent work carried out a systematic 
accuracy analysis of all existing methods for characterizing membrane 
parameters in RO/HPRO, forward osmosis (FO), pressure retarded 
osmosis (PRO), and osmotically assisted reverse osmosis (OARO) [21]. 
The result demonstrated that the direct RO method was extremely prone 
to random errors in measured quantities. For instance, a small random 
error (up to ± 1%) in measurement can induce a median error of 22% 

and a 95th error of 182% in the estimates of water permeability using 
the direct RO calculation method. Whereas the inclusion of multistage 
measurements and optimization of experimental conditions can signif
icantly reduce both methodological and measurement errors. Therefore, 
a smart design of experimental protocol based on data-driven analysis is 
critical to minimizing methodological errors and measurement errors. 

In this work, we present a novel method for characterizing mem
brane transport properties and mass transport coefficients in the 
boundary layer using a single RO experiment. This protocol consists of a 
RO experiment divided into multiple stages by varying applied hy
draulic pressure. All measured water and salt fluxes are simultaneously 
fitted to the RO transport equations, using A, B, and k as the regression 
parameters. To demonstrate the generalizability of this protocol, we 
perform a systematic analysis of the accuracy and robustness of the 
proposed method. This assessment also allows us to identify a set of ideal 
experimental conditions that minimize errors in A, B, and k. 

Following this protocol, we characterize A, B, and k parameters of 
two commercial RO membranes (i.e., SW30 and BW30) as a function of 
salinity and crossflow rate. The results of our study confirm that water 
and salt permeabilities of TFC-RO membranes decrease with increasing 
salinity and that the mass transfer coefficient in the boundary layer in
creases with increasing crossflow velocity. Finally, we discuss challenges 
associated with characterizing the effect of high salinity (>100 g/L TDS) 
on transport parameters using current membrane characterizing pro
tocols and identify critical needs in the further development of direct or 
empirical methods with higher accuracy for quantifying the high- 
salinity effect on membrane transport properties. 

2. Materials and methods 

2.1. Proposed protocol for characterizing membrane parameters and mass 
transfer coefficient in the boundary layer in a single RO experiment 

We propose a single RO experiment to characterize the intrinsic 
transport parameters, A and B of an RO membrane, and the mass transfer 
coefficient k in the boundary layer by measuring the water and salt flux 
across the membrane under varying applied pressure or feed concen
trations (Fig. 1A). The design matrices of the RO experiment include the 
number of stages (N ≥ 2), overpressure ratio, pressure increment by 
stage, feed concentration increment per stage, temperature, crossflow 
rate, and filtration cell dimensions. The influence of each design 
parameter will be discussed in Section 2.3. 

We developed a data-driven computational approach for optimizing 
the experimental protocol to maximize the accuracy and robustness of A, 

Fig. 1. Protocol of the proposed method. (A) A single 
RO experiment is conducted over several stages (N ≥
2) with varying applied pressure or feed concentra
tions. Measured quantities including pressure, Pf,n, 
feed concentration, Cf,n, permeate concentration, Cp,n, 
water flux, Jw,n, and salt flux, Js,n, at each stage are 
simultaneously used to solve for membrane parame
ters, A and B, mass transfer coefficient, k. (B) Sche
matic of water flux, salt flux, and salt concentration 
profile across a RO membrane. (C) Flowchart for the 
calculation of A, B, and k parameters using the pro
posed RO method.   

Y. Liang et al.                                                                                                                                                                                                                                    



Journal of Membrane Science 679 (2023) 121686

3

B, and k parameter measurements. The ideal RO experiment consisted of 
five stages. We maintained a constant feed concentration in all five 
stages while increasing the applied pressure by a constant value per 
stage. The increase in the driving force led to an increase in water flux 
and salt flux at each stage, allowing us to measure the five sets of water 
and salt fluxes in the single RO experiment. 

2.2. Determining the membrane transport properties and the mass transfer 
coefficient in the boundary layer 

2.2.1. Water and salt flux governing equation in RO 
The governing equation of water and salt flux in RO can be derived 

from the mass transport across the RO membrane. A schematic of the salt 
concentration profile across a RO membrane is shown in Fig. 1B. The 
water flux, Jw, and salt flux, Js across the active layer are given by 
Ref. [31]: 

Jw =A
(
Pf −

(
πf ,m − πp

))
(1)  

Js =B
(
Cf ,m − Cp

)
(2)  

Where A is the water permeability, B is the salt permeability, Pf is the 
feed pressure, πf ,m is the osmotic pressure at the membrane surface, πp is 
the osmotic pressure of the permeate, Cf ,m is the salt concentration at the 
membrane surface, Cp is the salt concentration of the permeate. 

Due to the selective passage of water across the RO membrane, 
rejected salt accumulates at the membrane surface. This results in a 
localized concentration gradient in the boundary layer defined as 
external concentration polarization (ECP). At steady state, the salt flux 
across the active layer is equal to the salt flux in the boundary layer [31]: 

Js = − Ds
dC
dx

+ JwC (3)  

Where Ds is the diffusion coefficient of salt in the boundary layer, and C 
is the salt concentration at the distance of x relative to the membrane. 

Integrating Eqn. (3) across the boundary layer thickness, from the 
bulk solution (x = 0, C = Cf) to the surface of membrane (x = δ, C = Cf,m), 
yields: 

Cf ,m =Cf exp
(

Jw

k

)

+
Js

Jw

(

1 − exp
(

Jw

k

))

(4)  

Where Cf ,m is the salt concentration at the feed-membrane interface, Cp 

is the salt concentration in the permeate, and k = D
δ is the boundary layer 

mass transfer coefficient. 
Based on Eqn. (4), the water and salt flux in Eqns. (1) and (2) can be 

expressed in terms of membrane parameters, A and B, mass transfer 
coefficient in the boundary layer, k, and experimentally accessible pa
rameters, Pf , Cf , Cp, Jw, Js. 

2.2.2. Calculating A, B, and k numerically by minimizing global error 
We utilize a differential evolution algorithm to minimize the 

maximum likelihood objective function to calculate membrane param
eters, A and B, and mass transfer coefficient, k, from the experimentally 
measured water and salt flux data. By following the five-stage procedure 
outlined in Section 2.1, ten values of water flux and salt flux were 
collected during a single RO experiment, i.e., Jexp

w,i and Jexp
s,i , where i = 1, 

2, 3, 4, 5 denotes the stage of the experiment. In addition, we also 
recorded the feed concentration (Cf), temperature (T), permeate con
centration (Cp,i, where i = 1, 2, 3, 4, 5), applied pressure (Pf,i, where i =
1, 2, 3, 4, 5). We used the standard differential evolution solver in Scipy 
to fit a group of five experiment conditions to Eqns. (1), (2) and (4), 
using A, B, and k as regression parameters [32]. We set the bound for A 
as [1e-3, 50], bound for B as [1e-4, 50], bound for k as [1e-6, 1], 
respectively. The ten transport equations and three unknowns (A, B, and 
k) constitute an over-determined system of non-linear equations, 
amendable for the numerical solution by minimizing the global error in 
the estimated fluxes and measured values. The global error, E, is defined 
as the non-dimensional sum of the difference between estimated and 
experimentally measured water and salt fluxes using the maximum 
likelihood objective function formulation [33,34]: 

E=Ew +Es =
∑nexp

i=1

(
Jest

w,i − Jexp
w,i

σexp
Jw,i

)2

+
∑nexp

i=1

(
Jest

s,i − Jexp
s,i

σexp
Js,i

)2

(5)  

Where n is the number of stages and is equal to 5 in this study, σJw,i is the 
standard deviation of water flux at each stage, and σJs,i is the standard 
deviation of salt flux at each stage. 

The goodness of the fit was checked by computing the absolute dif
ference between estimated fluxes and experimentally measured fluxes in 
Eqn. (6). We proved that Eqn. (6) is a more stringent quality control than 
the coefficient of determination [22] in the Supplementary section A. 

Errabs,w,i =

⃒
⃒
⃒Jest

w,i − Jexp
w,i

⃒
⃒
⃒

Jexp
w,i

≤ 0.1% (6)  

Fig. 2. Parameter ranges used for process data set 
generation in three experimental design protocols. 
(A) Parallel increases in feed concentration and 
pressure. The feed concentration increases by a 
certain step size (e.g., 1 or 3 or 5 g/L) per stage, and 
the applied pressure is increased by multiplying the 
current feed osmotic pressure by a fixed overpressure 
ratio (OPR). (B) Concentration sweep. The feed con
centration increases by a certain step size per stage 
while maintaining a constant pressure equal to the 
final feed osmotic pressure times the overpressure 
ratio. (C) Pressure sweep. The feed concentration is 
constant throughout the RO experiment, while the 
applied pressure increases by a certain step size (e.g., 
1, 3, or 5 bar). The initially applied pressure equals 
the feed osmotic pressure times the overpressure 
ratio.   
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2.2.3. Assumptions of the proposed method 
We assume that the membrane reflection coefficient approaches 

unity (i.e., g = 1). Therefore, the proposed method is only valid for tight, 
salt-rejecting membranes that can maintain virtually the entire osmotic 
pressure difference across its active layer [35]. 

We assume that the membrane transport properties, A and B, and 
mass transfer coefficient, k, are independent of the change of pressure 
within each RO experiment. To minimize the effect of pressure on A and 
B [36], we carried out the RO experiment using a small pressure step of 
10 psi per stage and a total pressure sweep of 40 psi in the entire 
experiment. Similarly, we neglect the effect of pressure on the level of 
ECP (i.e., k) within each RO experiment. All solution physical properties 
are dependent on the salinity and temperature [37,38]. 

In the theoretical validation of the proposed method, we assume that 
the random measurement errors are independent and identically 
distributed (IID) random variables [34]. 

The use of our proposed method for membrane parameter estimation 
is only valid when the measurement errors are small, such that that 
uncertainties in the independent variables are negligible compared to 
uncertainties in the dependent variables of the nonlinear model [33,39]. 
Therefore, we recommend that users follow measurement guidelines 
detailed in our previous work to minimize the random errors in the 
measured parameters [21]. 

2.3. Theoretical validation of the proposed method 

We first performed a systematic analysis to evaluate the accuracy and 
robustness of the proposed method for determining A, B, and k param
eters. In the analysis, we simulate the RO process using a standard mass 
balance model. We assess the effect of methodological error, random 
measurement error, and biased measurement errors on the accuracy of 
estimated A, B, and k parameters. The result of this analysis further 
guides the data-driven design of experimental protocol with high ac
curacy and robustness. 

2.3.1. Generation of process data 
We generated three sets of RO data in three experimental designs 

(Fig. 2), (1) parallel increase in pressure and salinity, (2) concentration 
sweep with constant pressure, and (3) pressure sweep with a constant 
salinity. We simulated the full range of RO operating conditions via a 
random selection of process parameters and membrane parameters from 
a uniform distribution using the Monte Carlo approach (Fig. 2). The 
range of membrane parameters represents the typical values reported in 
the literature [40]. The model input parameters consisted of membrane 

parameters, module design parameters, and operating conditions, while 
the output data included the mass transfer coefficient, water flux, and 
salt flux (Fig. 3A). The mass transfer coefficient was calculated from the 
Sherwood number [29,41]: 

Sh= 1.85
(

ReSc
dh

L

)0.33

(7)  

Sh= 0.04Re0.75Sc0.33 (8)  

where Re is the Reynolds number, Sc is the Schmidt number, dh is the 
hydraulic diameter, and L is the length of the channel. By using the 
tabulated diffusion coefficient, D, data from Lobo et al. [42], the mass 
transfer coefficient, k, can be calculated from: 

Sh= kdh/D (9) 

We generated 50,000 data sets for each experimental design. Our 
selected solver was able to solve ~99% of randomly generated combi
nations of input parameters, terminating when the change in water and 
salt flux was <0.1%. The CDFs of input parameters and output data are 
shown in Supplementary section B (Supplementary Figs. S1–3). 

2.3.2. Error addition to process data 
We first evaluated the accuracy of the proposed method without 

accounting for experimental error in the three proposed protocols (1) 
parallel, (2) concentration sweep, and (3) pressure sweep. Next, we 
assessed the effect of random errors and biased errors in measured data 
on the accuracy of the three proposed methods (Fig. 3A). A random error 
(up to ± 0.5%) was added to at least one process parameter including 
feed and permeate concentration, water and salt flux, pressure, tem
perature, and flow rate. A biased error (up to + 5%) was added to 
pressure. All errors were randomly generated from a uniform distribu
tion and were introduced to the parameters prior to analysis. We 
analyzed each data set ten times with different errors, expanding the size 
of the testing data set from 50,000 to 500,000. 

2.3.3. Analysis of accuracy of the proposed methodology 
We analyzed the accuracy of the proposed method (Eqn. (10)) by 

comparing the estimated A, B, and k solved by the method with the input 
A and B, and k calculated using Eqns. (7)–(9): 

Errabs,X =

⃒
⃒Xest − Xinput

⃒
⃒

Xinput × 100% (10) 

Here, Xest is the estimated membrane parameters and mass transfer 

Fig. 3. Proposed framework for (A) process simula
tion and error analysis, (B) search for ideal experi
mental protocol. The process data for RO is simulated 
using the solution-diffusion model that balances the 
mass transfer across the membrane. The inputs 
including membrane and process parameters are 
sampled across a bounded range using a Monte Carlo 
approach. The output water, salt flux, and the orig
inal process parameters with no error, or random 
errors with/without biased errors added in one or 
more process parameters, are used to calculate 
membrane parameters using the proposed method. 
The error is assessed by comparing the difference 
between the original membrane parameter inputs and 
the predicted membrane parameters. The ideal 
experimental protocol is generated by scanning 
through all design metrics to minimize the effect of 
random and biased errors on the accuracy of the 
proposed method.   
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coefficient. We reported the median error and 95th percentile error of 
estimates. The median error represents the middle value of the errors in 
all estimated membrane parameters, and the 95th percentile represents 
the value that is greater than 95% of all errors. 

We compared the performance of the proposed method in three 
experimental designs, (A) parallel, (B) concentration sweep, and (C) 
pressure sweep, to identify the ideal experimental protocol with high 
accuracy and robustness. We also evaluated the effect of individual 
design metrics on accuracy of the proposed method. 

2.3.4. Validation of mass transfer coefficient 
We validated the estimated mass transfer coefficient in the boundary 

layer in the RO system using an empirical method [30]. This method was 
based on the evaluation of the permeate decline induced by the addition 
of salt to an originally salt-free water feed. The decline of permeate flux 
due to the osmotic pressure prevailing at the membrane surface enables 
the estimation of salt concentration at the membrane surface, and hence 
the determination of mass transfer coefficient k. The mass transfer co
efficient is calculated by: 

k =
Jw,salt

ln
(

ΔP
πfeed − πpermeate

(
1 −

Jw,salt
Jw,salt− free

)) (11)  

Where Jw,salt− free and Jw,salt are the measured permeate fluxes before and 
after the addition of salt to the pure water feed, respectively, ΔP is the 
applied pressure, πfeed and πpermeate are the osmotic pressure of the feed 
and the permeate after salt addition. 

2.4. Implementation of the proposed method 

2.4.1. Materials 
We characterized two commercial thin-film-composite reverse 

osmosis membranes, BW30 and SW30-XLE, (Dow Chemical Company, 
Midland, MI). Three separate samples for each membrane type were 
employed. NaCl (>99%) was purchased from Fisher Scientific (US). 
Deionized water (Millipore, US) was used for solution preparation and 
membrane cleaning. 

2.4.2. Experimental procedure 
We characterized the water and salt flux of RO membranes in a 

crossflow RO system (Sterlitech, CF042). The cell has an effective 
membrane area of 42 cm2. A Danfoss App.06 pump was used to circulate 
the salt solution in closed loops at a crossflow velocity of between 0.557 
cm/s and 1.11 cm/s. A chiller held the temperature of the feed solution 
at 20 ± 0.1 ◦C. The feed concentration was automatically maintained at 
a fixed value by using a feedback control scheme that measured feed 
conductivity and added permeate from the RO to the feed tank when the 
conductivity increased above the set point. This allowed us to control 
the conductivity within ~0.1% of the set value. 

All membranes were pre-compacted in DI water at 600 psi for 24 h 
prior to measurement to ensure that the pure water flux remained stable 
over the experimental pressure range. At the beginning of the first 
measurement, an appropriate volume of the NaCl stock solution was 
added to the feed tank to obtain the desired concentration and initiate 
the first stage. All experimental parameters including pressure, tem
perature, conductivity of feed, conductivity of permeate, and weight of 
the permeate, were logged throughout the RO experiment. Concentra
tions were determined with a calibrated conductivity meter (Oakton 
Instruments, Vernon Hills, IL). Water flux was determined by moni
toring the rate of change in weight of the permeate. Salt flux at steady 
state was calculated using (Js = Jw ∗ Cp). Although the water flux and 
permeate concentration stabilized quickly, we kept it running for 4 h in 
the first stage. The second stage began by increasing the applied pressure 
by 10 psi and data logging continued for 2 h. The procedure was 
repeated for the third, fourth, and fifth stages (Supplementary Fig. S4). 

We characterized the effect of crossflow velocity and salinity on 

transport parameters, A and B of the RO membrane, and mass transfer 
coefficient, k, in the boundary layer. The experimental conditions were 
summarized in Table 1. 

3. Results and discussion 

Accurately measuring the membrane transport parameters and mass 
transfer coefficient is challenging due to the uncertainty in empirical 
methods that rely on simplified assumptions and imprecision in exper
imental measurements. In this work, we proposed a data-driven design 
protocol for simultaneous characterization of membrane parameters, A 
and B, and mass transfer coefficient, k, with high precision. 

We began by performing a systematic accuracy analysis to validate 
the robustness and reliability of the proposed methodology in three 
different experimental designs. Next, we scanned through the design 
matrix of the operating parameters, including the number of stages, 
overpressure ratio, increment of pressure per step, crossflow velocity, 
and cell dimensions, to identify the experimental protocol with the 

Table 1 
Complete set of RO experimental conditions.  

Membrane 
type 

Pressure (psi) Feed (g. 
L− 1) 

Crossflow velocity (cm. 
s− 1) 

BW 30 600, 610, 620, 630, 
640 

1 0.557 
0.892 
1.11 

SW 30 10 1.11 
20 1.11 
30 1.11  

Fig. 4. Heatmap of the median error and 95th percentile error of estimated A, 
B, and k parameters using the proposed 5-stage method in three experimental 
modes (A) Parallel increase in concentration and pressure, (B) Concentration 
sweep with a constant overpressure, (C) Pressure sweep with a constant feed 
concentration. Red solid line in the schematic indicates the pressure profile, and 
blue solid line indicates the feed concentration profile. The X-axis of the 
heatmap denotes the type of error added to the input parameter. 0 represents no 
errors added, R represents a random error up to ±0.5% added to all input pa
rameters, and B represents a biased error up to +5% added to the feed pressure 
in addition to random errors. Y-axis of the heatmap denotes the parameters 
estimated by the method. The median error represents the value in the middle 
of all errors, and the 95th percentile represents the value that is greater than 
95% of all errors. The blue colors indicate a small error and red colors indicate a 
large error in estimates, respectively. The process parameters used for RO data 
generation and error analysis in the figure are: concentration range from 0 to 
50 g/L, overpressure ratio of 1.5, flowrate of 5 L/h, hydraulic diameter of 
0.002 m, channel length of 0.3 m, concentration step of 1 g/L in (A) and (B), 
and pressure step of 1 bar in (C). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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highest accuracy. Following this protocol, we measured the membrane 
transport parameters, A and B, of two commercial TFC-PA RO mem
branes, i.e., SW30 and BW30, and mass transfer coefficient, k, in the 
boundary layer, as a function of feed salinity and crossflow velocity. 

3.1. Robustness and reliability of the methodology 

3.1.1. Accuracy of the proposed method in three RO experimental modes 
We analyzed the accuracy of the proposed method for estimating 

membrane parameters, A and B, and mass transfer coefficient, k, using 
three distinct RO experimental modes. In the parallel mode (Fig. 2A), we 

simultaneously increase the feed concentration and the applied pressure 
per stage. The applied pressure is calculated by multiplying the feed 
osmotic pressure at each stage with a constant overpressure ratio. In 
concentration sweep (Fig. 2B), we increase the feed concentration per 
stage while maintaining the constant pressure that is equal to the final 
feed osmotic pressure times the overpressure ratio. In pressure sweep 
(Fig. 2C), we maintain a constant feed concentration throughout the RO 
experiment while increasing the applied pressure per stage. 

The parallel and concentration sweep modes are susceptible to 
impact of random errors and biased errors, resulting in poor estimates of 
the k parameter. In the parallel mode (Fig. 4A), the 95th error in 

Fig. 5. Median error in the estimates of (A) water permeability, (B) salt permeability, and (C) mass transfer coefficient as a function of the absolute error in water flux 
and salt flux. The simulated result is generated using the pressure method in the pressure-sweep mode. The condition for the data simulation is outlined in Fig. 2. 

Fig. 6. Effect of individual parameters in the design 
metrics on the accuracy of proposed method using the 
pressure-sweep experimental protocol. (A) number of 
stages, (B) ratio of overpressure, (C) pressure step, (D) 
crossflow rate, (E) hydraulic diameter, and (F) chan
nel length. The bottom three columns in light blue, 
light red, and light yellow indicate the median error 
in A, B, and k with the addition of random errors, and 
the corresponding error bar represents the 95th 
percentile error. The upper three columns in dark 
blue, dark red, and dark yellow indicate the median 
error in A, B, and k with the addition of random errors 
and biased error in pressure, and the corresponding 
error bar represents the 95th percentile error. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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estimated k parameter increases to 4.9% with the addition of random 
errors and 22% with the addition of biased errors. In addition, using a 
constant pressure led to an even higher uncertainty in k parameter. The 
95th errors in estimated k parameter increase to 15% with the addition 
of random errors and 30% with the addition of biased errors in the 
concentration-sweep mode (Fig. 4B). As random and biased errors are 
common in experiments, we do not advise using these two approaches. 

The pressure-sweep mode in the proposed method shows the best 
overall performance due to its higher tolerance to random and biased 
errors. It also benefits from easier process operation. Although varying 
applied pressure increases the uncertainty of estimated A, using a con
stant feed concentration mediates the effect of biased error in pressure 
on the estimates of A. The median and the 95th percentile error in A 
remain as low as 3.4% and 10% with the addition of random and biased 
errors in pressure-sweep mode (Fig. 4C). More importantly, using a 
constant feed concentration significantly increases the accuracy of 
estimated k which remained at 0.1% without any errors in measure
ments, and the 95th percentile error remained below 5.2% and 8.8% 
with addition of random and biased errors, respectively. Finally, in a 
continuous multi-stage RO experiment, increasing the applied pressure 
can be swiftly performed by changing the controller setpoint in an 
automated system or manually adjusting the pressure regulator in a 
manual system. 

3.1.2. Reliability of the methodology 
Estimation methods require quantitative guidance on the accuracy of 

estimated parameters as a function of error in the fitted values. In this 
method, the accuracy of estimates in A, B, and k increase with a decrease 
in absolute error between measured and estimated water and salt flux 
values (Fig. 5). The normalized errors in the estimated parameters all 
converge towards zero as absolute errors between measured and esti
mated water and salt flux approach zero. In our simulated results for the 
five-stage pressure-sweep RO method, an absolute error in measured 
and estimated water flux and salt flux of less than 0.1% will yield a 
median error of 3.7% and a 95th error of 10% in the calculated pa
rameters (Fig. 5). 

3.2. Data-driven design of a high accuracy experimental protocol 

We proposed a multi-stage characterization method based on a non- 
linear regression of an over-determined system of equations to predict A, 
B, and k parameters in RO. The determination of three unknowns re
quires at least a 2-stage RO experiment with two pairs of measured water 
fluxes and salt fluxes. Other important design metrics include the 
overpressure ratio, size of the pressure step, crossflow rate, and flow cell 
dimensions. To identify an optimal experimental protocol that maxi
mizes the accuracy and robustness of the membrane parameters mea
surements, we performed a systematic investigation of the effect of 
individual design parameters on the accuracy of the proposed method. 

Fig. 7. Experimental measurement of (A, B) water 
permeability, A, and (C, D) salt permeability, B, of 
two commercial RO membranes, BW30 and SW30, as 
a function of feed salinity and crossflow velocity. (E, 
F) Experimental measurement of mass transfer coef
ficient, k, and estimation of k using reference method 
[30] in the boundary layer as a function of feed 
concentration and crossflow velocity. A single RO 
experiment comprised a 5-stage pressure sweep from 
600 psi to 640 psi with a pressure increment of 10 psi 
per step.   
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3.2.1. Influence of the number of stages 
Characterizing the membrane over a greater number of stages in

creases the accuracy of all three predicted parameters (Fig. 6A) because 
inevitable experimental errors are averaged out by a larger dataset. 
Specifically, the median error and 95th error in predicted A decrease 
from 6.9% to 18% in the 2-stage RO experiment to 3.4% and 10% in the 
5-stage RO experiment, respectively. Similarly, the median error and 
95th error in predicted k decrease from 11% to 29% in the 2-stage RO 
experiment to 3.7% and 8.8% in the 5-stage RO experiment, 
respectively. 

3.2.2. Influence of the ratio of overpressure 
Increasing the ratio of overpressure enhances the accuracy of all 

predicted parameters (Fig. 6B) because it minimizes the effect of mea
surement errors in concentration on the estimates of the driving force. At 
low-pressure conditions where the osmotic pressure of the feed is 
comparable to the applied pressure, the estimation of surface concen
tration and driving forces are sensitive to the changes in both bulk 
concentration and applied pressure. The influence of errors in concen
tration becomes minimal under high-pressure conditions because the 
applied pressure dominates the effective driving force. For example, the 
median error and 95th error in k decrease from 9.1% to 74%–3.7% and 
8.8% as the ratio of overpressure increases from 1.1 to 1.5. 

3.2.3. Influence of the size of pressure step 
Increasing the size of pressure step also enhances the accuracy of the 

proposed method. For instance, the median error and 95th percentile 
error in A decrease from 3.4% to 10%–1.1% and 3.1%, and the median 
error and 95th percentile error in k decrease from 3.7% to 8.8%–0.5% 
and 1.2% when the step size of pressure increment increases from 1 bar 
to 5 bar. However, this analysis assumes that the effect of compaction 
during the 5-stage experiment on the membrane transport properties is 
negligible. Therefore, we suggest using a small step size of pressure to 
ensure a confident prediction of parameters using the proposed method. 

3.2.4. Influence of the crossflow rate 
While increasing the crossflow rate would increase the accuracy of 

estimated A and B, the accuracy of estimated k parameter is compro
mised (Fig. 6D). The median and 95th errors in A decrease from 3.4% to 
10%–1.5% and 3.5%, but the median error and 95th error in k increase 
from 3.7% to 8.8%–5.7% and 29%. Increasing crossflow rate reduces the 
effect of CP in the boundary layer and increases the effective driving 
force. Consequently, the effect of random errors on estimated A and B 
decrease. However, the uncertainty in estimated k increases when the 
concentration gradient in the boundary layer decreases at a high 
crossflow rate. These results suggest a trade-off between accurately 
characterizing membrane transport properties and accurately charac
terizing the mass transfer coefficient in the boundary layer. In addition, 
it provides two avenues for characterizing transport phenomena in RO. 
One is to use a high crossflow rate to maximize the accuracy of estimated 
membrane transport parameters. The other is to use a low crossflow rate 
in order to better characterize the mass transfer coefficient in the 
boundary layer. 

3.2.5. Influence of the flow cell dimension 
The effect of crossflow rate on the accuracy of the proposed method 

applies to the design of flow cells (Fig. 6E and F). If one wants to 
characterize the membrane transport properties, a flow cell with a 
smaller hydraulic diameter and a smaller channel length should be used 
to maximize the accuracy of estimated A and B. In contrast, a more 
accurate characterization of the mass transfer coefficient should be 
performed using a flow cell with a bigger hydraulic diameter and 
channel length. Although changing flow rates is always easier than 
altering the dimension of flow cells, our analysis provides an important 
toolkit for quantifying the accuracy of each parameter using a specific 
flow cell. 

3.3. Implementation of the proposed methodology 

The above analysis informed the design of an optimal experimental 
protocol with high accuracy and robustness. Following this protocol, we 
characterized the membrane transport properties of two commercial 
TFC-PA RO membranes, BW30 and SW30, and the mass transfer coef
ficient of the boundary layer in RO. A detailed experimental procedure is 
outlined in Section 2.4. 

3.3.1. Effect of salinity on A, B, and k 
Both water permeability and salt permeability decrease with 

increasing feed concentration, while the mass transfer coefficient re
mains constant (Fig. 7A and Supplementary Table S1). The average A 
and B of three BW30 membranes decreased by 17% and 15% when the 
feed concentration increased from 1 g/L to 30 g/L, respectively. Simi
larly, the average A and B of three SW30 RO membranes decreased by 
14% and 17% when the feed concentration increased from 1 g/L to 30 g/ 
L, respectively. As expected, the mass transfer coefficient appears to be 
independent of the feed salinity and was comparable between the two 
types of RO membranes under the same crossflow velocity. 

Theoretical and experimental evidence suggests that the A and B 
parameters of polymeric membranes are dependent on salinity. Free 
volume theory states that A and B decrease with a decrease in the water 
uptake by the membrane [21]. As previously described, increasing the 
external salt concentration induces the osmotic de-swelling of the 
membranes and decreases the thermodynamic activity of water in the 
solution. 

While previous studies led to an inconclusive understanding of 
trends in A and B with increasing salinity [21,43,44], the results of our 
measurement provide direct evidence of the theoretical dependence of A 
and B on feed concentration. Two prior studies used the direct RO and 
FO characterization method to measure the effect of salinity on mem
brane transport parameters but concluded that A and B parameters 
either increased, decreased, or remained unchanged with increasing 
salinity. This incomplete observation is highly likely to be caused by the 
uncertainty of the direct characterization method and its low tolerance 
to inevitable experimental errors. In contrast, our proposed method uses 
a multi-stage strategy and a data-driven experimental protocol to 
minimize the effect of methodological errors, random errors, and biased 
errors on the estimates of A and B. Therefore, we successfully captured 
the decreasing trends of both A and B with increasing salinity as is 
consistent with transport theory. 

Validation of the mass transfer coefficient using an empirical method 
matches the estimated k using our proposed method at near dilute 
conditions but shows slight deviations with increasing salinity. The 
difference in k determined using the empirical method and our proposed 
method is as low as 4% in the RO experiments with BW30 membranes, 
and 16% in the RO experiments with SW30 membranes, in 1 g/L feed 
solution. The difference increases up to 50% when the feed concentra
tion is above 10 g/L, however, which was close to the level of deviation 
reported in the original study. Sutzkover et al. found the deviation in 
measured k and literature values increases from 3% to 102% when the 
Reynolds number increases from 2629 to 19344 [30]. We hypothesize 
that the uncertainty stems from the low tolerance of experimental errors 
using a single-stage measurement method, similar to the direct RO 
membrane characterization method. Nevertheless, the magnitude of k 
determined using our proposed method and the empirical method re
mains at the same level. 

3.3.2. Effect of crossflow velocity on k 
Mass transfer coefficient increases with increasing crossflow veloc

ity, while A and B remain nearly constant (Fig. 7B and Supplementary 
Table S1) The average k in the boundary layer of three BW30 RO 
membranes and three SW30 RO membranes increased by 7% and 13%, 
respectively, when the crossflow velocity increased from 5.57 cm/s to 
11.2 cm/s. Note that the difference of measured k parameters between 
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two types of membranes decreases with the increasing crossflow ve
locity because our RO system becomes more stable at higher velocity. 
Nevertheless, the magnitude of k parameters at 5.57 cm/s is similar 
across the six RO membranes tested in this study. In addition, the dif
ference between the measure k using the empirical method and our 
proposed method is 4% and 16% in the RO experiments with BW30 and 
SW30 at the crossflow velocity of 11.2 cm/s. The deviation in k increases 
to 11% and 24% when the crossflow velocity decreases to 5.57 cm/s 
because our RO system is less stable at low crossflow velocity, as well as 
the imprecision in experimentally measured water flux. 

3.4. Persistent challenges in determining A and B at high salinities 

Extending the operational range of membrane-based desalination 
systems is critical for several emerging processes, including high- 
pressure reverse osmosis (HPRO) and osmotically assisted reverse 
osmosis (OARO), for high-salinity brine treatment [45]. The optimal 
design of these processes requires accurate estimates of membrane 
transport properties across the full salinity range [46]. Our prior analysis 
compared the existing empirical methods in characterizing membrane 
parameters in RO/HPRO, FO, PRO, and OARO, and identified the in
adequacy of these methods to quantify the effect of salinity on water 
permeability and salt permeability [21]. 

We performed an accuracy analysis of our proposed method and the 
direct RO method in high-salinity conditions (Fig. 8). The multi-stage 
method continues to achieve a more accurate determination of A and 
B parameters by averaging out the random measurement errors up to 
100 g/L. However, we also find that the errors in A and B estimated from 
the multi-stage method increase exponentially with salinity and exceed 
the errors in A and B estimated from the direct RO method above 100 g/ 
L. This uncertainty in the actual A and B values makes it challenging to 
resolve the effects of high feedwater salinity on membrane transport 
properties and assure the membrane performance in high salinity pro
cess applications. We further note that the direct method requires an 
accurate estimate of mass transport coefficients, which might be difficult 
to acquire for high salinity conditions, preventing application of the 
direct method. 

4. Conclusion 

A simple protocol for simultaneously determining the transport 
properties of RO membranes and the mass transfer coefficient in the 
boundary layer is developed based on a data-driven design to maximize 
accuracy. A single RO experiment is divided into five stages, each using a 
different applied pressure while maintaining a constant feed concen
tration. We developed an algorithm to fit a group of five experiment 
conditions to the RO mass transport model using A, B, and k as regres
sion parameters. A, B, and k are determined by minimizing the global 

error in the estimated fluxes and measured values. We performed a 
systematic accuracy analysis to validate the robustness of the proposed 
method compared to the direct calculation method. Furthermore, this 
analysis aids the development of a data-driven protocol of RO experi
ment to minimize the effect of measurement errors on the estimated 
parameters. Following this protocol, we characterized two types of 
commercial TFC-PA RO membranes. The results of our measurement 
demonstrated that both A and B decreased with increasing salinity, and k 
increased with increasing crossflow velocity. While the proposed 
method enables high-precision characterization of A and B at low- 
salinity conditions by minimizing the effect of random errors, the 
determination of A and B at high-salinity conditions remains inaccurate 
using this method. The development of direct or higher accuracy 
empirical methods is an important step to fully quantifying the effect of 
high salinity on membrane transport properties. 
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Fig. 8. Accuracy of multi-stage RO method and direct 
RO characterization method. A random error (up to 
± 0.5%) was added to all process parameters 
including feed and permeate concentration, water 
and salt flux, pressure, temperature, and flow rate. A 
biased error (up to + 5%) was added to pressure. The 
blue solid line represents the median error of A and B 
estimated using the multi-stage RO method, and the 
red solid line represents the median error of A and B 
estimated using the direct RO method. The blue 
dashed line represents the 95th percentile error of A 
and B estimated using the multi-stage RO method, 
and the red dashed line represents the 95th percentile 
error of A and B estimated using the direct RO 
method. We do not recommend using the multistage 
method above 100 g/L TDS. (For interpretation of the 
references to color in this figure legend, the reader is 

referred to the Web version of this article.)   
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